Inhaltsverzeichnis:

Thema	Bereiche	
Grundlagen der Optik	Wellenlänge des Lichts	2-2
·	Wellenbereiche der elektromagnetischen Stra.	2-2
Unterscheidung optischer Größen	Physikalische Größen (Radiometrisch)	2-3
	Physiologische Größen (Fotometrisch)	2-3
Definition optischer Größen	Radiometrische Grundgrößen	2-3
	Fotometrische Grundgrößen	2-3
LED	Prinzip und Aufbau	2-4
	Kennwerte und Farben	2-4
Fotodioden	Kennwerte	2-4
Laserdioden	Prinzip und Aufbau	2-5
	Laserspektrum	2-5
Fototransistor	Aufbau	2-5
	Kennlinien	2-5
Optokoppler	Prinzip und Aufbau	2-6
	Schaltbild	2-6
Fotoelement / Solarzelle	Prinzip und Aufbau	2-6
	Materialien	2-6
Fotowiderstand	Prinzip und Aufbau	2-7
Peltierelement	Prinzip und Aufbau	2-7
T- und U-abhängige Widerstände	Heißleiter	2-8
	Kaltleiter	2-8
	Varistor	2-8
Hallgenerator	Aufbau und Schaltbild	2-9
	Funktionsweise	2-9
	Berechnung und Kennlinie	2-9

Wellenlänge des Lichts:

$$E = \frac{h \bullet c}{\lambda}$$

$$\lambda = \frac{h \bullet c}{E}$$

$$c = \frac{E \bullet \lambda}{h}$$

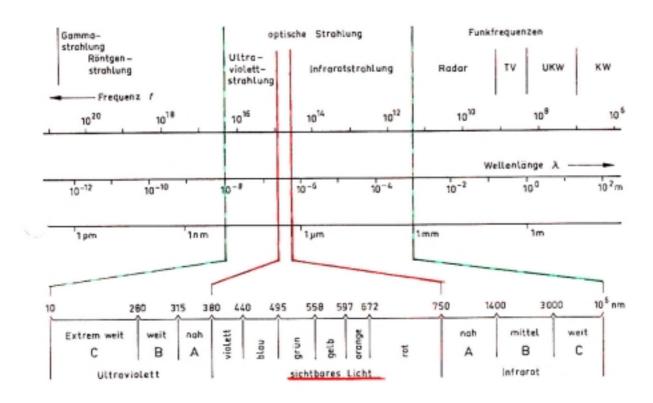
$$h = \frac{E \bullet \lambda}{c}$$

$$\lambda = \frac{c}{v}$$

$$v = \frac{c}{\lambda}$$

$$c = \lambda \bullet v$$

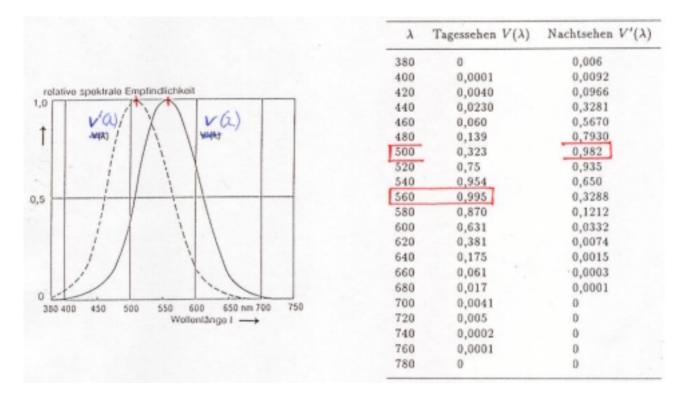
E= Energie in eV (Elektronenvolt)


h = Planksches Geschwindigkeitsquantum = 4,1357 • 10⁻¹⁵ eVs

c = Lichtgeschwindigkeit = $3 \cdot 10^8 \frac{m}{s}$

 λ = (Lambda) Wellenlänge in m

v = (Ny) Frequenz des Lichts in Hz = $\frac{1}{s}$

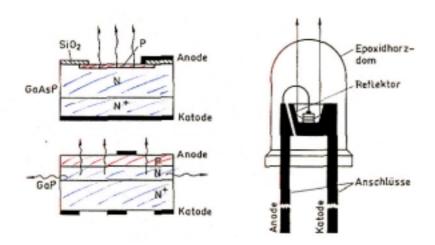

Wellenbereiche der elektromagnetischen Strahlung:

Unterscheidung physikalischer und physiologischer Größen:

<u>Physikalische</u> (radiometrische) Größen sind durch Grundgrößen erstellt. Dazu zählen z.B. Arbeit und Leistung.

<u>Physiologische</u> (fotometrische) Größen sind durch die Wahrnehmung des Menschen bestimmt, da dieser verschieden Spektralbereiche unterschiedlich wahrnimmt.

Strahlungs- und lichttechnische Größen:


Tabelle 3.1 Definition der Strahlungs- und lichttechnischen Größen nach DIN 5031 und 5033. Der Index e steht für energetisch, Index v für visuell. A_s = Sendefläche, A_e = Empfangsfläche. Der Winkel α ist definiert zur Normalen der Sendefläche, vom Empfänger aus gesehen.

Radiometrisch	Zeichen	Dim.	Fotometrisch	Zeichen	Dim.
Strahlungs- energie	W_{ϵ}	Ws	Lichtmenge	W_{\bullet}	lms
Strahlungs- leistung	$\Phi_{\epsilon} = \frac{\mathrm{d}W_{\epsilon}}{\mathrm{d}t}$	W	Lichtstrom	$F_{\mathbf{v}} = \frac{\mathrm{d}W_{\mathbf{v}}}{\mathrm{d}t}$	lm
Spezifische Ausstrahlung	$M_{\rm e} = \frac{{\rm d}\Phi_{\rm e}}{{\rm d}A_{\rm s}}$	W/m^2	spez. Licht.	$M_{\rm v}=rac{{ m d}\Phi_{ m v}}{{ m d}A_{ m s}}$	lm/m²
Strahlstärke	$I_{\mathbf{c}} = \frac{\mathrm{d}\Phi_{\mathbf{c}}}{\mathrm{d}\Omega}$	W/sr	Lichtstärke	$I_{\mathbf{v}} = \frac{\mathrm{d}\Phi_{\mathbf{v}}}{\mathrm{d}\Omega}$	lm/sr
Strahldichte	$L_{e} = \frac{\mathrm{d}I_{e}}{\mathrm{d}A_{s}\cos\alpha}$	$W/m^2 sr$	Leuchtdichte	$L_{\rm v} = \frac{{\rm d}I_{\rm e}}{{\rm d}A_{\rm s}\cos\alpha}$	cd/m^2
Bestrahlungs- stärke	$E_{\rm e} = \frac{{\rm d}\Phi_{\rm e}}{{\rm d}A_{\rm e}}$	W/m²	Beleuchtungs- stärke	$E_{\mathbf{v}} = \frac{\mathrm{d}\Phi_{\mathbf{v}}}{\mathrm{d}A_{\mathbf{c}}}$	lm/m², lx
Bestrahlung	$H_{\rm e} = \int E_{\rm e} { m d}t$	W/m ² s	Belichtung	$H_{\mathbf{v}} = \int E_{\mathbf{v}} \mathrm{d}t$	lm/m²s, Ix s

LED's (Lumineszenzdioden):

Prinzip:

Halbleiterdioden die beim Anlegen einer Spannung in Durchlaßrichtung elektromagnetische Wellen im sichtbaren und infraroten (IR) Bereich abstrahlen.

Je nach Wahl des Halbleitermaterials kann man verschiedene Farben erzeugen:

Halbleiter	Spektralber. λ	Farbe	Durchbruchsp. U _F	Energiedifferenz ΔW
GaAs – Si	790 nm	Infrarot	1,2 V – 1,4 V	1,57 eV
GaAs – Zn	933 nm	Infrarot	1,2 V – 1,4 V	1,33 eV
GaAs – P	670 nm	Rot	1,3 V – 1,7 V	1,90 eV
GaAsP – N	560 nm	Grün	2,0 V – 2,4 V	2,10 eV
GaP – N	590 nm	Gelb	2,4 V – 2,8 V	2,18 eV
SiC	460 nm	Blau	2,8 V – 3,4 V	2,58 eV

Fotodioden:

Der Aufbau einer Fotodiode entspricht dem einer normalen Diode mit dem Unterschied, daß ein lichtdurchläßiges Gehäuse verwendet wird.

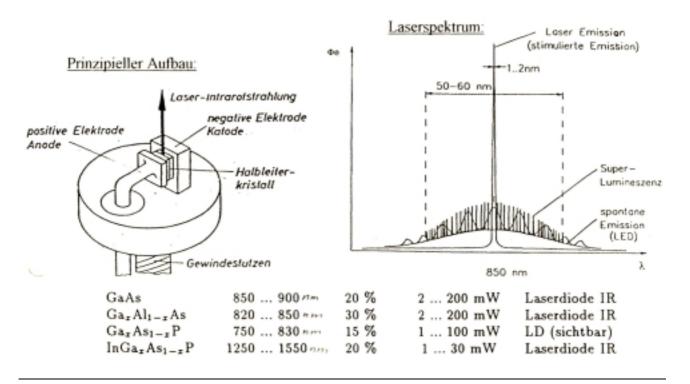
Fotodioden werden ausschließlich in Sperrichtung betrieben!!

Dunkelstrom:

Bedingt durch die Störstellenleitfähigkeit fließt in Abhängigkeit von der Umgebungstemperatur ϑ_U und der angelegten Sperrspannung U_R ein kleiner Strom.

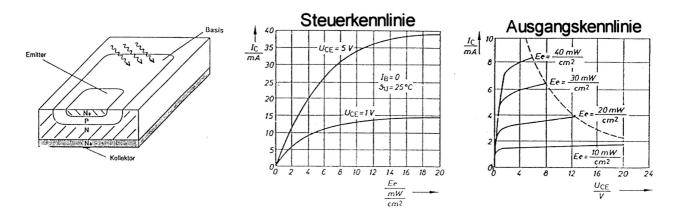
Fotostrom:

Fällt Licht auf die Sperrschicht der Fotodiode, so fließt in folge des inneren Fotoeffekts der sogenannte Fotostrom.


Unterschied zu Fotoelement und Solarzelle:

Eine in Durchlaßrichtung betriebene Fotodiode nennt man Fotoelement. Mehrere Fotoelemente zusammengeschaltet nennt man Solarzelle.

Laserdioden:

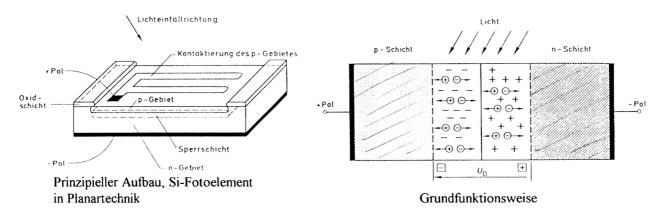

Laserdioden strahlen meist Licht im Infrarotbereich ab. Ihr Betrieb erfolgt in Durchlaßrichtung. Erst ab einem bestimmten Durchlaßstrom I_{TH} (treshhold current) tritt eine
Abstrahlung des Laserlichtes auf. Laser arbeiten meist im Pulsbetrieb zur Vermeidung von
Überhitzung aufgrund der hohen Leistung.

Achtung: Durch die Bündelung und die sehr enge spektrale Abstrahlung des Lasers besteht ein hohes Unfallrisiko bei unsachgemäßer Anwendung, zumal Laser meist im nichtsichtbaren Bereich strahlen!!

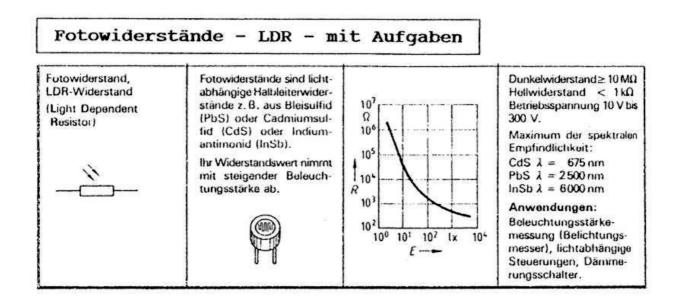
Fototransistor:

Beim Fototransistor wird die Basis-Emitter-Strecke durch den Lichteinfall beeinflußt. Der enstehenden Fotostrom wird mit dem Verstärkungsfaktor B verstärkt. Der Zusammenhang zwischen Beleuchtungsstärke E und Kollektorstrom I_C ist nicht linear. Fototransistoren sind ca. 100 bis 700 mal empfindlicher als Fotodioden.

Optokoppler:

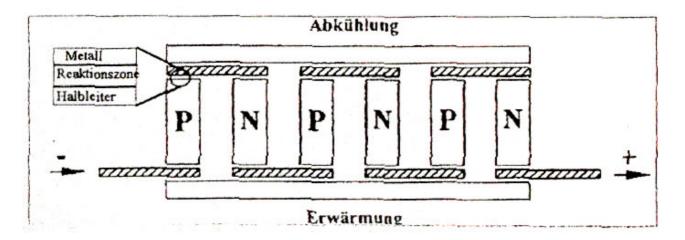

Als Optokoppler werden Bauteile bezeichnet, die in einem Gehäuse eine LED und einen lichtempfindlichen Fotohalbleiter miteinander kombinieren und damit eine galvanische Trennung realisieren.

Die meisten Optokoppler arbeit mit einer IR-Sendediode und einem Si-Fototransistor da sie bei der selben Wellenlänge des Lichtes ihr Strahlungsmaximum bzw. ihre höchste Empfindlichkeit haben.


Fotoelement / Solarzelle:

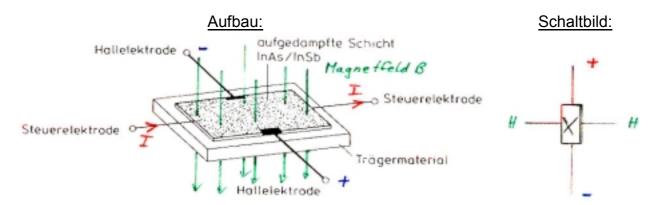
Fotoelemente und Solarzellen liefern bei Beleuchtung einen Strom der zur Beleuchtungsstärke und der beleuchteten Fläche proportional ist. Betreibt man die Bauteil im Leerlauf so erreicht die Leerlaufspannung schnell ihre Sättigung. Diese Elemente werden auch als aktive Fotohalbleiter bezeichnet.

Material	Wirkungsgrad im Labor	Wirkungsgrad in der Produktion
Monokristallines Si	ca. 24 %	14 % - 17 %
Polykristallines Si	ca. 18 %	13 % - 15 %
Dünnschicht-Zellen	ca. 13 %	5 % - 7 %

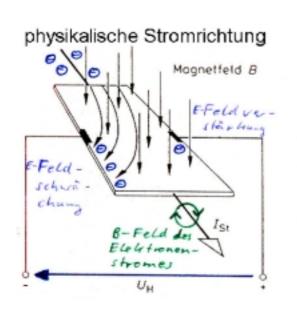

Fotowiderstand LDR:

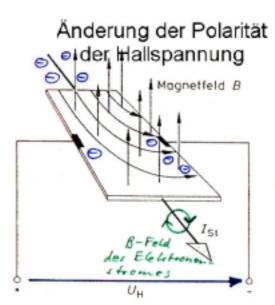
Peltierelement:

Peltierelemente sind thermoelektrische Bauteile auf Halbleiterbasis. Sie besitzen die Fähigkeit, sich auf einer Seite zu erwärmen und auf der anderen abzukühlen. Damit ist z.B. die Kühlung von CPU's möglich. Es werden Bi₂Te₃- oder Sb₂Se₃-Verbindungen verwendet.


Aufbau:

Temperatur- und Spannungsabhängige Widerstände:


Heißleiter DIN 4407/12.76 NTC-Widerstand (negative temperature coefficient)	Kaltleiter DIN 44080/10.83 PTC-Widerstand (positive temperature coefficient)	Varistoren VDR-Widerstand (voltage dependent Resistor)
- to 1 1	θ † † ——————————————————————————————————	U11
Heißleiter sind temperaturabhängige Halbleiterwiderstände, deren Widerstandswerte sich mit steigender Temperatur verringern (Material: polykristalline Mischoxidkeramik)	Kaltleiter sind temperaturabhängige Widerstände, deren Widerstandswerte bei ansteigender Temperatur annähernd sprungförmig ansteigen, sobald eine bestimmte Temperatur überschritten wird (Material: ferroelektrische Keramik, z. B. TiO ₃).	Varistoren sind Widerstände, deren Widerstandswerte sich bei ansteigender Spannung verringern (Material: Siliciumkarbid, $\alpha < 5$ Zinkoxid, $\alpha < 30$)
10 ² 5000 K B-Werte 2000 K B-Werte 2000 K In °C	R _D	Tiefstmöglicher Wert des Widerstandes bei Betriebsspannung 10^{6} 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} 10^{0} Höchstzulässige Betriebsgleichspannung 10^{-2} 20 30 50 80 100 150 U Zinkoxidvaristor in V $R = \frac{U^{1-\alpha}}{K}$ K : Elementarkonstante in A, von der Geometrie abhängig α : Nichtlinearitätsexponent
Temperatur-Koeffizient $\alpha_{\rm R}$ $\alpha_{\rm R} = \frac{-B \cdot 100}{T^2} [\alpha_{\rm R}] = \frac{\%}{\rm K} [T] = \rm K$ B-Wert $B = \frac{T_1 \cdot T_2}{T_2 - T_1} \ln \frac{R_1}{R_2}$ R ₁ : Widerstandswert in Ω bei T_1 in K (Kelvin) R ₂ : Widerstand in Ω bei T_2 in K (Kelvin) B: B-Wert als Maß für die Temperaturabhängigkeit des Heißleiters in K (Kelvin), Materialkonstante	Beispiele $R_{min} = 20^{\circ}C$ $\vartheta_{Rmin} = 50 \Omega$ $R_{b} = 100 \Omega$ $\vartheta_{b} = 60^{\circ}C$ $R_{p} \ge 50 k\Omega$ $\vartheta_{p} = 110^{\circ}C$ $U_{max} = 30 V$ $\alpha_{R} = 20 \%/K$	Kennwerte (Beispiele) α > 30 bei ZnO (Zinkoxidvaristoren) Betriebstemperatur: -40°C +85°C Betriebsspannung: 141500 V Ansprechzeit: < 50 ns Stoßstrom: bis 4000 A Dauerbelastbarkeit: 0,8 W


Hallgenerator:

Wirkungsweise:

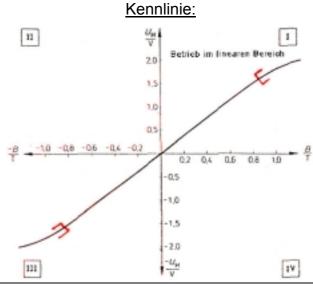
Wird der stromdurchflossenen Hallgenerator von einem Magnetfeld B durchsetzt, so entsteht auf einer Elektrodenseite eine Feldschwächung und damit ein Elektronenüberschuß. Auf der anderen Elektrodenseite ensteht eine Feldverstärkung und damit ein Elektronenmangel. Es tritt damit eine Spannung zwischen den Hallelektroden auf die abhängig von der Feldrichtung ist.

Berechnung:

$$U_H = \frac{R_H}{d} \bullet I_{ST} \bullet B$$

$$I_{ST} = \frac{U_H \bullet d}{R_H \bullet B}$$

U_H = Hallspannung in V I_{ST} = Steuerstrom in A


B = Magnetische Flußdichte in $T = \frac{V_S}{m^2}$

 $R_H = Hallfaktor in \frac{m^3}{r}$

d = Dicke des Halbleiterplättchens in m

R_H und d sind herstellerabhängig

Stand: 05.07.2001

